Stability of discrete shock profiles for systems of conservation laws

Lucas Coeuret

LMPA - Séminaire EMA - 23th of November 2023

Institut de Mathématiques de Toulouse (IMT)

- Context and definition of discrete shock profiles
- Existence results
- Stability of discrete shock profiles
 - Definition of the nonlinear orbital stability and overview of results
 - Main result : Spectral stability implies linear orbital stability

We consider a one-dimensional scalar conservation law

$$\partial_t u + \partial_x f(u) = 0, \quad t \in \mathbb{R}_+, x \in \mathbb{R}, u : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R},$$
(1)

where the flux $f : \mathbb{R} \to \mathbb{R}$ is a smooth function.

The result that will be presented also holds for systems of conservations laws.

This type of PDE tends to have solutions with discontinuities.

We consider the Burgers equation $f(u) = \frac{u^2}{2}$ and thus f'(u) = u.

$$\partial_t u + u \partial_x u = 0$$

Larger goal: We want to know if numerical schemes obtained by discretizing our PDE can approach correctly the discontinuous solutions.

We consider two distinct states $u^-, u^+ \in \mathbb{R}^2$ and a speed $s \in \mathbb{R}$. The function u defined by

$$orall t \in \mathbb{R}_+, orall x \in \mathbb{R}, \quad u(t,x) := \left\{egin{array}{cc} u^- & ext{if } x < st, \ u^+ & ext{else,} \end{array}
ight.$$

is a weak solution of the scalar conservation law if and only if

$$f(u^{-}) - f(u^{+}) = s(u^{-} - u^{+})$$
. (Rankine-Hugoniot condition)

It is a Lax shock when

$$f'(u^+) < s < f'(u^-).$$

The main result of the presentation will focus on steady Lax shocks, i.e. when s = 0.

Conservative finite difference schemes

We consider a conservative explicit finite difference scheme

$$\forall n \in \mathbb{N}, \quad u^{n+1} = \mathcal{N}u^n$$

where for $u = (u_j)_{j \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}}$ and $j \in \mathbb{Z}$ as

$$\mathcal{N}(u)_{j} := u_{j} - \nu \left(F(\nu; u_{j-p+1}, \dots, u_{j+q}) - F(\nu; u_{j-p}, \dots, u_{j+q-1}) \right).$$

- $u^0 \in \mathbb{R}^{\mathbb{Z}}$: initial condition
- $\mathcal{N}:\mathbb{R}^{\mathbb{Z}}\to\mathbb{R}^{\mathbb{Z}}$: nonlinear discrete evolution operator
- $F:]0, +\infty[\times \mathbb{R}^{p+q} \to \mathbb{R}:$ numerical flux
- $p,q \in \mathbb{N} \setminus \{0\}$: integers defining the size of the stencil of the scheme.
- $\nu = \frac{\Delta t}{\Delta x} > 0$: ratio between the time and space steps.

The value u_j^n must be a good approximation of a solution u on $[n\Delta t, (n+1)\Delta t[\times [(j-\frac{1}{2})\Delta x, (j+\frac{1}{2})\Delta x]]$

Assumptions:

- $\forall u \in \mathbb{R}$, $F(\nu; u, ..., u) = f(u)$ (consistency condition)
- For some neighborhood ${\mathcal U}$ of the states u^\pm

 $\forall u \in \mathcal{U}, \quad -q \leq \nu f'(u) \leq p \quad (\mathsf{CFL condition on } \nu)$

- Linear- ℓ^2 stability for constant states $u \in \mathcal{U}$
- The scheme introduces numerical viscosity. In the present presentation, we consider a first order scheme. This excludes dispersive schemes like for instance the Lax-Wendroff scheme.

Example : We can consider the Burgers equation $(f(u) = \frac{u^2}{2})$ and the shock associated to the states $u^- = 1$ and $u^+ = -1$. For the numerical scheme, we consider the modified Lax Friedrichs scheme

$$\forall u \in \mathbb{R}^{\mathbb{Z}}, \forall j \in \mathbb{Z}, \quad \mathcal{N}(u)_j := \frac{u_{j+1} + u_j + u_{j-1}}{3} - \nu \frac{f(u_{j+1}) - f(u_{j-1})}{2}$$

Discrete shock profile (DSP): A discrete shock profile is a solution of the numerical scheme of the form

$$\forall n \in \mathbb{N}, \forall j \in \mathbb{Z}, \quad u_j^n = \overline{u}(j - s\nu n)$$

where the function $\overline{u}: \mathbb{Z} + s\nu\mathbb{Z} \to \mathbb{R}$ verifies that

$$\overline{u}(x) \underset{x \to \pm \infty}{\to} u^{\pm}.$$

Stationary discrete shock profiles (SDSP) are sequences $\overline{u} = (\overline{u}_j)_{j \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}}$ that satisfy

$$\mathcal{N}(\overline{u}) = \overline{u} \quad ext{and} \quad \overline{u}_j \stackrel{
ightarrow}{\xrightarrow{j
ightarrow \pm \infty}} u^{\pm}.$$

Example : We consider the initial condition (mean of the standing shock on each cell $[(j - \frac{1}{2})\Delta x, (j + \frac{1}{2})\Delta x]$)

$$\forall j \in \mathbb{Z}, \quad u_j^0 := \begin{cases} 1 & \text{if } j \leq -1, \\ 0 & \text{if } j = 0, \\ -1 & \text{if } j \geq 1. \end{cases}$$

Main goal: Finding conditions on the numerical schemes so that stable shock waves for the PDE \Rightarrow stable DSPs for the numerical scheme

This separates the theory surrounding DSPs in two parts:

• Existence of DSPs • Stability of DSPs

From now on we will focus on elements of theory surrounding stationary discrete shock profiles (s=0).

Example : We consider the same initial condition u^0 as before but add a mass δ at j = 0. We look at the limit of the solution of the numerical scheme.

For standing Lax shocks, one aims to have the existence of a differentiable one-parameter family $(\overline{u}^{\delta})_{\delta \in]-\varepsilon,\varepsilon[}$ of SDSPs.

- Jennings, Discrete shocks (1974)
 - scalar case
 - conservative monotone scheme
 - for shocks satisfying Oleinik's E-condition
- Majda and Ralston, *Discrete Shock Profiles for Systems of Conservation Laws* (1979)
 - system case
 - first order scheme
 - weak Lax shocks
- Michelson, Discrete shocks for difference approximations to systems of conservation laws (1984)
 - extension of Majda-Ralston for third order scheme
- Different cases: Smyrlis (1990), Liu-Yu (1999), Serre (2004) etc...

Stability of discrete shock profiles

The end goal would be to prove a property of nonlinear orbital stability for the DSPs:

For small admissible perturbations h, prove that the solution u^n of the numerical scheme for the initial condition $u^0 = \overline{u} + h$ converges towards the set of translations of the DSP $\{\overline{u}^{\delta}, \delta \in] - \varepsilon, \varepsilon[\}$.

Known stability results

- Jennings, Discrete shocks (1974)
 - scalar case
 - conservative monotone scheme
 - nonlinear orbital stability for ℓ^1 perturbations
- Liu-Xin, L¹-stability of stationary discrete shocks, (1993)
 - system case
 - Lax-Friedrichs scheme
 - weak Lax shocks
 - zero mass perturbation (dropped in Ying (1997))
- Michelson, *Stability of discrete shocks for difference approximations to systems of conservation laws*, (2002)
 - system case
 - weak Lax shocks
 - First and third order schemes
- Different cases: Smyrlis (1990), Liu-Yu (1999), etc...

One would hope to prove a result of nonlinear orbital stability in the system case, for a fairly large class of numerical schemes and with no smallness assumption on the amplitude of the shock.

Our first goal is to study the semigroup $(\mathcal{L}^n)_{n\in\mathbb{N}}$ associated to the operator \mathcal{L} obtained by linearizing \mathcal{N} about the SDSP \overline{u} .

We introduce a zero mass perturbation $h^0 \in \ell^1(\mathbb{Z})$. We then define

$$v^0 = \overline{u} + h^0$$

and

$$\forall n \in \mathbb{N}, \quad v^{n+1} = \mathcal{N}(v^n). \tag{2}$$

If we define $h^n = v^n - \overline{u}$, then (2) yields

$$h^{n+1} = \mathcal{L}h^n + Q(h^n, \overline{u})$$

with $Q(h^n, \overline{u})$ being some "quadratic" term. Duhamel's formula implies that a precise understanding of the behavior of the family of operators $(\mathcal{L}^n)_{n\geq 0}$ is necessary at this point. Study of the Green's function associated to \mathcal{L} :

 $\forall j_0 \in \mathbb{Z}, \forall n \in \mathbb{N}, \quad \mathcal{G}(n, j_0, \cdot) = \mathcal{L}^n \delta_{j_0}.$

Find a way to link spectral properties of \mathcal{L} to the asymptotic behavior of the Green's function $\mathcal{G}(n, j_0, j)$

• Techniques developed in Zumbrun-Howard, *Pointwise semigroup methods and stability of viscous shock waves* (1998) to study traveling waves for parabolic PDEs.

• Extension of the result of Lafitte-Godillon, *Green's function pointwise* estimates for the modified Lax-Friedrichs scheme, (2003)

Linearization of the numerical scheme about the constant states u^\pm

We define the bounded operator $\mathcal{L}^{\pm}: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ obtained by linearizing \mathcal{N} about the constant state u^{\pm} :

$$orall h \in \ell^2(\mathbb{Z}), orall j \in \mathbb{Z}, \quad (\mathcal{L}^{\pm}h)_j := \sum_{k=-p}^q a_k^{\pm} h_{j+k}.$$

The coefficient a_k^{\pm} are expressed using the partial derivatives $\partial_k F(\nu; u^{\pm}, \dots, u^{\pm})$.

This is a Laurent operator/convolution operator. Its spectrum is given by

$$\sigma(\mathcal{L}^{\pm}) = \left\{ \sum_{k=-p}^{q} a_k^{\pm} e^{itk}, t \in \mathbb{R}
ight\}.$$

•
$$\sum_{k=-p}^{q} a_{k}^{\pm} = 1$$
, $\sum_{k=-p}^{q} k a_{k}^{\pm} = -\nu f'(u^{\pm})$ (consistency condition)
• $\forall t \in \mathbb{R} \setminus 2\pi\mathbb{Z}$, $\left| \sum_{k=-p}^{q} a_{k}^{\pm} e^{itk} \right| < 1$ (ℓ^{2} - stability)

• There exists a complex number β_{\pm} with positive real part such that

$$\sum_{k=-p}^{q} a_k^{\pm} e^{itk} =_{t \to 0} \exp(-if'(u^{\pm})\nu t - \beta_{\pm} t^2 + O(|t|^3)). \quad \text{(Diffusivity condition)}$$

Green's function associated to the operator \mathcal{L}^+

The Gaussian behavior has been studied thoroughly in recent extensions on the local limit theorem (see [DSC14, RSC15, CF22, Coe22]).

We define the bounded operator $\mathcal{L}: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ obtained by linearizing \mathcal{N} about $\overline{u}:$

$$\forall h \in \ell^2(\mathbb{Z}), \forall j \in \mathbb{Z}, \quad (\mathcal{L}h)_j := \sum_{k=-p}^q \mathsf{a}_{j,k} h_{j+k},$$

with
$$a_{j,k} \to a_k^{\pm}$$
 as $j \to \pm \infty$.

The coefficient $a_{j,k}$ are expressed using the partial derivatives $\partial_k F(\nu; \overline{u}_{j-p}, \ldots, \overline{u}_{j+q-1})$.

We define the Green's function

$$\forall n \in \mathbb{N}, \forall j_0 \in \mathbb{Z}, \quad \mathcal{G}(n, j_0, \cdot) = (\mathcal{G}(n, j_0, j))_{j \in \mathbb{Z}} := \mathcal{L}^n \delta_{j_0} \in \ell^2(\mathbb{Z}).$$

Observation on the spectrum of $\ensuremath{\mathcal{L}}$

The elements of the unbounded component of $\mathbb{C}\setminus\sigma(\mathcal{L}^+)\cup\sigma(\mathcal{L}^-)$ are either eigenvalues of \mathcal{L} or are in its resolvent set.

Spectral stability assumption

• In the article, we construct a so-called Evans function. We assume that 1 is a simple zero of the Evans function. As a consequence, 1 is a simple eigenvalue of the operator \mathcal{L} .

"
$$\mathcal{N}(\overline{u}^{\delta}) = \overline{u}^{\delta}$$
 and thus $\mathcal{L} \frac{\partial \overline{u}^{\delta}}{\partial \delta} = \frac{\partial \overline{u}^{\delta}}{\partial \delta}$."

 $\bullet\,$ The operator ${\cal L}$ has no other eigenvalue of modulus equal or larger than 1.

Theorem

Under some more precise assumptions, there exist a positive constant c, an element V of ker $(Id - \mathcal{L})$ and an (explicit) function $E : \mathbb{R} \to \mathbb{R}$ such that for all $n \in \mathbb{N} \setminus \{0\}$, $j_0 \in \mathbb{N}$ and $j \in \mathbb{Z}$

$$\begin{aligned} \mathcal{G}(n, j_0, j) \\ = & E\left(\frac{nf'(u^+)\nu + j_0}{\sqrt{n}}\right) V(j) \quad (\text{Excited eigenvector}) \\ & + \mathbb{1}_{j \in \mathbb{N}} O\left(\frac{1}{\sqrt{n}} \exp\left(-c\left(\frac{|nf'(u^+)\nu - (j - j_0)|^2}{n}\right)\right)\right) \quad (\text{Gaussian wave}) \\ & + \mathbb{1}_{j \in -\mathbb{N}} O\left(\frac{1}{\sqrt{n}} \exp\left(-c\left(\frac{|nf'(u^+)\nu + j_0|^2}{n}\right)\right) e^{-c|j|}\right) \quad (\text{Exponential residua} \\ & + O(e^{-cn-c|j-j_0|}) \end{aligned}$$

where $E(x) \xrightarrow[x \to -\infty]{} 1$ and $E(x) \xrightarrow[x \to +\infty]{} 0$.

There is a similar result for $j_0 \in -\mathbb{N}$.

Green's function associated to the operator \mathcal{L} for $j_0 = 30$

Case of systems

• Using the inverse Laplace tranform with Γ a path that surrounds the spectrum $\sigma(\mathcal{L}),$ we have

$$\forall n \in \mathbb{N} \setminus \{0\}, \forall j_0, j \in \mathbb{Z}, \quad \mathcal{G}(n, j_0, j) = \frac{1}{2i\pi} \int_{\Gamma} z^n \left((zld - \mathcal{L})^{-1} \delta_{j_0} \right)_j dz.$$
(3)

• We rewrite the eigenvalue problem

$$(zId - \mathcal{L})u = 0$$

as a discrete dynamical system

$$\forall j \in \mathbb{Z}, \quad W_{j+1} = M_j(z)W_j. \qquad (4)$$

We are interested in solutions of (4) that tend towards 0 as j tends to $+\infty$ or $-\infty$ (Jost solutions, geometric dichotomy) and use them to express find an expression and meromorphically extend $z \mapsto ((zld - \mathcal{L})^{-1}\delta_{j_0})_j$ through the essential spectrum near 1.

 \bullet Using this idea and a good choice of path $\Gamma,$ we prove sharp estimates on the temporal Green's function.

Theorem

Under the same assumption as for the previous theorem, for $p \in [1, +\infty]$, there exists a positive constant C such that

$$\forall h \in \ell^1(\mathbb{Z}, \mathbb{C}^d), \forall n \in \mathbb{N}, \quad \min_{V \in \ker(Id_{\ell^2} - \mathcal{L})} \|\mathcal{L}^n h - V\|_{\ell^p} \leq \frac{C}{n^{\frac{1}{2}\left(1 - \frac{1}{p}\right)}} \|h\|_{\ell^1}.$$

Conclusion/ Perspective / Open questions

About the theorem:

- Bounds uniform in j_0
- Very few limitation on the size of the stencil
- The result can be proved for systems
- The result can be proved for higher odd ordered schemes (not only for first order schemes)

Perspective:

- Can we now prove nonlinear orbital stability ? (at least in the scalar case?)
- Existence of spectrally stable SDSPs?
- What can we say for moving shocks (with rational speed)?
- What can we say for dispersive schemes? (Lax-Wendroff for instance)
- Study of the stability for multi-dimensional conservation laws (Carbuncle phenomenon)

Bibliography i

J.-F. Coulombel and G. Faye.

Generalized Gaussian bounds for discrete convolution powers.

Revista Matemática Iberoamericana, 38(5):1553–1604, 2022.

- L. Coeuret.

Local Limit Theorem for Complex Valued Sequences. preprint, November 2022.

P. Diaconis and L. Saloff-Coste.

> Convolution powers of complex functions on \mathbb{Z} . Math. Nachr., 287(10):1106-1130, 2014.

- P. Godillon.

Green's function pointwise estimates for the modified Lax-Friedrichs scheme.

M2AN, Math. Model. Numer. Anal., 37(1):1–39, 2003.

Bibliography ii

G. Jennings.

Discrete shocks.

Comm. Pure Appl. Math., 27:25-37, 1974.

J.-G. Liu and Z. P. Xin.

 L^1 -stability of stationary discrete shocks.

Math. Comp., 60(201):233-244, 1993.

🔋 T.-P. Liu and S.-H. Yu.

Continuum shock profiles for discrete conservation laws. I. Construction.

Comm. Pure Appl. Math., 52(1):85-127, 1999.

T.-P. Liu and S.-H. Yu.

Continuum shock profiles for discrete conservation laws. II. Stability.

Comm. Pure Appl. Math., 52(9):1047-1073, 1999.

Bibliography iii

D. Michelson.

Discrete shocks for difference approximations to systems of conservation laws.

Adv. in Appl. Math., 5(4):433-469, 1984.

D. Michelson.

Stability of discrete shocks for difference approximations to systems of conservation laws.

SIAM J. Numer. Anal., 40(3):820-871, 2002.

A. Majda and J. Ralston.

Discrete shock profiles for systems of conservation laws. Comm. Pure Appl. Math., 32(4):445–482, 1979.

E. Randles and L. Saloff-Coste.
 On the convolution powers of complex functions on Z.
 J. Fourier Anal. Appl., 21(4):754–798, 2015.

Y. S. Smyrlis.

Existence and stability of stationary profiles of the LW scheme.

Commun. Pure Appl. Math., 43(4):509-545, 1990.

🔋 V. Thomée.

Stability of difference schemes in the maximum-norm. *J. Differential Equations*, 1:273–292, 1965.

📔 L. Ying.

Asymptotic stability of discrete shock waves for the Lax-Friedrichs scheme to hyperbolic systems of conservation laws.

Japan J. Indust. Appl. Math., 14(3):437–468, 1997.

K. Zumbrun and P. Howard. Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J., 47(3):741–871, 1998.